
Solutions - Quiz 4

(April 4th @ 5:30 pm)

PROBLEM 1 (35 PTS)

- The following FSM has 4 states, one input x and one output z.
 - ✓ The excitation equations are given by:
 - $Q_1(t+1) \leftarrow Q_0(t)$
 - $Q_0(t+1) \leftarrow \bar{x} \oplus Q_1(t)$
 - ✓ The output equation is given by: $z = \bar{x} \oplus Q_1(t) \oplus Q_0(t)$
 - ✓ Provide the <u>Excitation Table</u> and the <u>State Diagram</u> (any representation).
 - Which type is this FSM? Circle or mark the correct one:

(Moore)

State Assignment: S0: Q=00, S1: Q=01, S2: Q=10, S3: Q=11

PRESENT STATE x Q ₁ Q ₀ (t)	NEXTSTATE $Q_1Q_0 (t+1) z$	Σ		PRESENT STATE	NEXT STATE	Z	resetn = 0 \mathbf{x}/\mathbf{z} 0/1
0 0 0	0 1 1	())	S0 S1	S1 S3	1	S0 S1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
0 1 0	0 0 0	()	S2	s0	0	
0 1 1 1 0 0	1 0 1) -	S3 S0	S2 S0	1 0	
1 0 1	1 0 1	1	-	S1 S2	S2 S1	1 1	
1 1 1	1 1 0	1	-	s3	S3	0	
							1/0

1

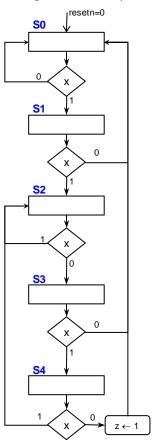
PROBLEM 2 (35 PTS)

use ieee.std logic 1164.all;

library ieee;

Draw the state diagram (in ASM form) of the FSM whose VHDL description is listed below:

```
entity myfsm is
     port ( clk, rstn: in std logic;
              a, b: in std logic;
              x,w,z: out std logic);
 end myfsm;
      rstn=0
S1
    b
                            а
S<sub>2</sub>
                                     w \leftarrow 1
```


```
✓ Circle or mark the correct FSM type:
   (Mealy)
                         (Moore)
```

а

```
architecture behavioral of myfsm is
   type state is (S1, S2, S3);
   signal y: state;
begin
  Transitions: process (rstn, clk, a, b)
  begin
     if rstn = '0' then y \le S1;
     elsif (clk'event and clk = '1') then
         case v is
            when S1 =>
                if b = '1' then y <= S2;
                else if a = '1' then y <= S3; else y <= S1; end if;
                end if;
             when S2 \Rightarrow
                 if a = '1' then y <= S1; else y <= S2; end if;
             when S3 =>
                 if b = '1' then y \le S3; else y \le S1; end if;
         end case;
     end if;
  end process;
  Outputs: process (y,a,b)
  begin
      x <= 0'; w <= 0'; z <= 0';
      case y is
          when S1 \Rightarrow if b \Rightarrow '0' then x \Leftarrow '1'; end if;
          when S2 \Rightarrow z \Leftarrow '1';
          when S3 \Rightarrow if a \Rightarrow '0' then w \Leftarrow '1'; end if;
      end case;
  end process;
end behavioral;
```

PROBLEM 3 (30 PTS)

• Sequence detector: Draw the state diagram (any representation) of an FSM with input x and output z. The detector asserts z=1 when the sequence 11010 is detected. Right after the sequence is detected, the circuit looks for a new sequence.

